ENTIRE PATHOS EDGE SEMIENTIRE BLOCK GRAPH

VENKANAGOUDA MGOUDAR ${ }^{1}$ \& JAGADEESH \mathbf{N}^{2}
${ }^{1}$ Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur, Karnataka, India
${ }^{2}$ Research Scholar Sri Siddhartha Academy of Higher Education, Tumkur, Kalpataru First Grade Science
College, Tiptur, Karnataka, India

Abstract

In this paper, we introduce the concept ofentire pathos edge semientire block graph of a tree $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$. We obtain some properties of this graph. We study the characterization of graphs whose entire pathos edge semientire block graphs are always planar, minimally nonouter planar, crossing number one. Further, we also establish the characterization for E_{P} (T) to be Hamiltonian and noneulerian.

KEYWORDS: Block Graph, Edge Semi Entire Graph, Inner Vertex Number, Line Graph

MATHEMATICS SUBJECT CLASSIFICATION: 05C

I. INTRODUCTION

All graphs considered here are finite, undirected without loops or multiple edges. Any undefined term or notation in this paper may be found in Harary [2].

The concept of pathos of a graph G was introduced by [1] as a collection of minimum number of edge disjoints open paths whose union is G. The path number of a graph G is the number of path of pathos. Stanton [7] and Harary [2] have calculated the path number of certain classes of graphs like trees and complete graphs.

For a graph $G(p, q)$ if $B=\left\{u_{1}, u_{2}, u_{3}, \cdots, u_{r} ; r \geq 2\right\}$ is a block of , then we say that point u_{1} and block B are incident with each other, as are u_{2} and B and so on. If two distinct blocks B_{1} and B_{2} are incident with a common cut vertex then they are called adjacent blocks.

By a plane graph G we mean embedded in the plane as opposed to a planar graph. In a plane graph G let $e_{1}=u v$ be an edge. We say e_{1} is adjacent to the vertices u and v, which are also adjacent to each other. Also an edge e_{1} is adjacent to the edge $e_{2}=u w$. A region of G is adjacent to the vertices and edges which are on its boundary, and two regions of G are adjacent if their boundaries share a common edge.

The crossing number $\mathrm{c}(\mathrm{G})$ of G is the least number of intersection of pairs of edges in any embedding of G in the plane. Obviously G is planar if and only if $c(G)=0$.

The edge degree of an edge $\mathrm{e}=\{\mathrm{a}, \mathrm{b}\}$ is the sum of degrees of the end vertices a and b . Degree of a block is the number of vertices lies on a block. Blockdegree B_{v} of a vertex v is the number of blocks in which v lies. Block path is a path in which each edge in a path becomes a block. If two paths p_{1} and p_{2} contain a common cut vertex then they are adjacent paths and the pathdegree P_{v} of a vertex v is the number of paths in which v lies. Degree of a region is the number of vertices lies on a region. The regiondegree R_{v} of a vertex v is the number of regions in which the vertex v lies. Pendant pathos is a
path p_{i} of pathos having unit length.
The inner vertex number $\mathrm{i}(\mathrm{G})$ of a planar graph G is the minimum number of vertices not belonging to the boundary of the exterior region in any embedding of G in the plane.

A new concept of a graph valued functions called the edge semi Entire block graph $\mathrm{E}_{\mathrm{b}}(\mathrm{G})$ of a plane graph G was introduced by Venkanagouda in[8] and is defined as the graph whose vertex set is the union of set of edges, set of blocks and set of regions of G in which two vertices are adjacent if and only if the corresponding edges of G are adjacent, the corresponding edges lies on the blocks, the corresponding edges lies on the region and the corresponding blocks are incident to a cut vertex.

The pathos edge semientire graph $\mathrm{P}_{e}(\mathrm{~T})$ of a tree was introduced by in [9]. The pathos edge semientire graph $\mathrm{P}_{e}(\mathrm{~T})$ of a tree T is the graph whose vertex set is the union ofset of edges, regions and the set of pathos of pathos in which two vertices are adjacent ifand only if the corresponding edges of T are adjacent, edges lies on the region and edgeslies on the path of pathos. Since the system of path of pathos for a tree T is not unique, thecorresponding pathos edge semientire graph is also not unique.

The pathos edge semientire block graph of a tree T denoted by $\mathrm{P}_{\mathrm{vb}}(\mathrm{T})$ is the graph whose vertex set is the union of the vertices, regions, blocks and path of pathos of T in which two vertices are adjacent if and only if they are adjacent vertices of T or vertices lie on the blocks of T or vertices lie on the regions of T or the adjacent blocks of T . Clearly the number of regions in a tree is one. This concept was introduced by Venkanagouda in [3].

The block graph $B(G)$ of a graph G is the graph whose vertex set is the set of blocks of G in which two vertices are adjacent if the corresponding blocks are adjacent. This graph was studied in [2].

The path graph $\mathrm{P}(\mathrm{T})$ of a tree is the graph whose vertex set is the set of path of pathos of T in which two vertices of $\mathrm{P}(\mathrm{T})$ are adjacent if the corresponding path of pathos have a common vertex.

The following will be useful in the proof of our results.
Theorem 1[6]: If G is a (p, q) graph whose vertices have degree d_{i} then $L(G)$ has q vertices and q_{L} edges where $q_{L}=-q+\frac{1}{2} \sum d_{i}^{2}$.

Theorem 2[6]: The line graph $L(G)$ of a graph G has crossing number one if and only if G is planar and 1 or 2 holds:

1. The maximum degree $D(G)$ is 4 and there is unique non cut vertex of degree.
2. The maximum degree $\mathrm{D}(\mathrm{G})$ is 5 , every vertex of degree 4 is a cut vertex, there is a unique vertex of degree 5 and has at most 3 edges in any block.

Theorem 3[2]: A connected graph G is isomorphic to its line graph if and only if it is a cycle.
Theorem 4[6]: The line graph $L(G)$ of a graph is planar if and only if G is planar, $\Delta \leq 4$ and if deg $v=4$ for a vertex v of G, then v is a cut vertex.

Theorem 5[1]: A graph is planar if and only if it has no sub graph homeomorphic to K_{5} or $K_{3,3}$.
Theorem 6[1]: A connected graph G is eulerian if and only if each vertex in G has even degree.

Theorem 7[2]: A nontrivial graph is bipartite if and only if all its cycles are even.
Theorem 8[3]: For any planar graph G, pathos edge semientire block graph $\mathrm{PE}_{b}(G)$ whose vertices have degree d_{i} has $(2 q+k+1)$ vertices and $\frac{1}{2} \sum d_{i}^{2}+\sum \mathrm{q}_{\mathrm{j}}+\sum \frac{b_{k}\left(b_{k}-1\right)}{2}$ edges, where r the number of regions, b the number of blocks q_{j} the number of edges in a block b_{j}, b_{k} be the block degree of a cut vertex C_{k} and q_{r} be the number of edges region r_{1}.

Theorem 9 [10]: For any tree $T, \mathrm{P}_{\mathrm{Eb}}(\mathrm{T})$ has crossing number one, if and only if T is a path P_{4}.
Theorem 10[10]: For any tree $T, \mathrm{P}_{\mathrm{Eb}}(\mathrm{T})$ is always non-separable.
Theorem 11[10]: For any edges e_{i}, in a tree T with edge degree n then degree of a corresponding vertex in $T_{P e}(T)$ is $n+1$.

1. Entire Pathos Edge Semi Entire Block Graph

We now define the following graph valued function.
Definition 2.1: The Entire pathos edge semientire block graph of a tree T denoted by $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is the graph whose vertex set is the union of set of edges, blocks, regions and path of pathos of T in which two vertices are adjacent if the corresponding edges of T are adjacent or corresponding blocks of T are adjacent or one corresponds to a block of T and other to the edge e of T and e lies on it , or one corresponds to a region of T and other to an edge e of T and e lies on it or one corresponds to a path of pathos of T and other to an edge e of T and e lies on it or one corresponds to the block b of T and other the path p of T and both b and p have a common edge in T. In Figure 2.1, a graph G and its total pathos edge semientire block graph are shown.

Figure 2.1

Remark 1: If a tree T is connected then $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is also connected.
Remark 2: For any tree $T, \mathrm{P}_{\mathrm{Eb}}(\mathrm{T})$ is a spanning sub graph of $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$.
Theorem 12: For any tree $\mathrm{T}, \mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is always nonseparable.
Proof. By Theorem 10, $\mathrm{P}_{\mathrm{Eb}}(\mathrm{T})$ is nonseparable and by Remark 2, $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is also non separable.
Theorem 13: If Tis a connected graph with p vertices and q edges whose vertices have degree d_{i} and $i b_{i}$ be the number of blocks to which the edge e_{i} belongs in T then the entire pathos edge semientire block $\operatorname{graph} \mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ has $2 \mathrm{q}+\mathrm{k}+1$ vertices and $2 q+\frac{1}{2} \sum d_{i}^{2}+\sum q_{j}+\frac{1}{2} \sum b_{k}\left(b_{k}-1\right)+$ edges, where q_{j} be the number of edges in each block b_{j} and b_{k} be the block degree of a cut vertex c_{k}.

Proof. By the definition of $E_{P e}(T)$, the number of vertices is the union of the edges, regions, blocks and path of pathos of T. By the Remark 2 and by Theorem $8, \mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ has $2 \mathrm{q}+\mathrm{k}+1$ vertices. By the definition of $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$, the number of edges in $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is the sum of the edges in $\mathrm{P}_{\mathrm{Eb}}(\mathrm{T})$ and the edges of T . By Theorem 8, $\mathrm{E}\left[\mathrm{P}_{\mathrm{Eb}}(\mathrm{T})\right]=\frac{1}{2} \sum d_{i}^{2}+\sum \mathrm{q}_{\mathrm{j}}+\sum \frac{b_{k}\left(b_{k}-1\right)}{2}$ and the edges of pathos block graph is q. Hence $\mathrm{E}\left[\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})\right]=2 \mathrm{q}+\frac{1}{2} \Sigma d_{i}{ }^{2}+\Sigma q_{j}+\frac{1}{2} \Sigma b_{k}\left(b_{k-1}\right)$.

Theorem 14: For any tree $T, E_{P e}(T)$ is planar if and only if T is $K_{1, n}, n \leq 3$.
Proof. Suppose $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is planar. Assume that T is $\mathrm{k}_{1, \mathrm{n}}$ for $\mathrm{n} \geq 4$. For the sake of simplicity, we take $\mathrm{n}=4$. By the definition of $\mathrm{L}(\mathrm{T}), \mathrm{L}\left(\mathrm{K}_{1,4}\right)=\mathrm{K}_{4}$. Since all the edges of T lies on one region then in $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$, the corresponding region vertex r_{1} is adjacent for all vertices of K_{4} to form a complete graph K_{5}. Hence $E_{P e}(T)$ contain K_{5} as induced sub graph, which is nonplanar, a contradiction.

Conversely, suppose $T=K_{1, n}$, for $n \leq 3$. Let $T=K_{1,3}$ then $L\left(K_{1,3}\right)=K_{3}$. Since T is a tree and all the edges lies on only one region r_{1}. In a tree T each edge is a block then by the definition of $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$, each vertex e_{1}^{\prime} is adjacent to the block vertices b_{i} as well as the region vertex r_{1}. Further the pathos vertices p_{i} is adjacent to the vertices $e_{i}{ }^{\prime} \& e_{j}{ }^{\prime}$ which are corresponds to the edges lies on path of pathos of T.Lastly, each block is an edge and is adjacent to the pathos vertices to form a planar graph. Hence $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is planar.

Theorem 15: For any tree $\mathrm{T}, \mathrm{E}_{\mathrm{Pe}(\mathrm{T})}$ is minimally nonouterplanar if and only if $\Delta(\mathrm{T}) \leq 2$ and T has a unique vertex of degree 2 .

Proof. Suppose $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is minimally nonouterplanar assume that $\Delta(\mathrm{T})<2$. By the Theorem $14, \mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is outer planar, a contradiction. Thus $\Delta(T)=2$.

Assume that there exist two vertices of degree 2 in T then by Theorem $9, \mathrm{P}_{\mathrm{Ee}}(\mathrm{T})$ has crossing number one which is non-planar, a contradiction. Hence T has exactly one vertex of degree 2

Conversely, suppose every vertex of T has ≤ 2 and has a unique vertex of degree 2 , there T is P_{3}. By the definition of timegraph $L\left(P_{3}\right)=P_{2}$. Since all edges of T lies on only one region \& it contain only one path. $\operatorname{In} E_{P e}(T) r_{1}$ is adjacent to $e_{i} \& e_{j}$ and $e_{i} \& e_{j}$ adjacent to the block b_{i}, b_{j} respectively. Also b_{i} and bj are adjacent to form cycle $e_{i}, e_{j}, b_{j}, b_{i} e_{i}, r_{i}$ is adjacent to $e_{i} \& e_{j}$. Further P_{i} is adjacent to $e_{i} e_{j}, b_{i}, b_{j}$, clearly p_{i} is the inner vertex number. Hence $I\left[E_{P e}(T)\right]=1$.

Theorem 16: For any tree $T, E_{P e}(T)$ has crossing number one if and only if T is a path P_{4} or $K_{1,3}\left(P_{1}\right)$.

Proof. Suppose $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ has crossing number one, then $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is non-planar. By the Theorem 14 we have $\mathrm{T}=\mathrm{K}_{1, \mathrm{n}}$, $\mathrm{n} \geq 4$ or $\mathrm{T}=\mathrm{P}_{\mathrm{n}} \mathrm{n} \geq 4$.

We now consider the following cases.
Case 1: Assume that $T=K_{1, n}$ for $n=4$. By the definition of line graph $L\left(K_{1,4}\right)=K_{4}$. In a tree all the edges lies on only one region r_{1}, in $T_{E p}(T), r_{1}$ is adjacent to all vertices of K_{4}, which form K_{5}. Further each edge is a block in T and all four blocks $b_{1}, b_{2}, b_{3} \& b_{4}$ are adjacent to each other to form a complete graph $K_{4}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$. In $E_{P e}(T)$, the inner vertex say b_{2} is adjacent to the corresponding vertices $e_{i}{ }^{\prime}$ which form one more crossing number. Hence $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ has crossing number at least two, a contradiction.

Case 2: Assume that $T=P_{n}$, for $n=5$ clearly $L\left(P_{5}\right)=P_{4}$. In $E_{P e}(T)$.the region vertex r_{1} is adjacent to all vertices $e_{1}{ }^{\prime}, e_{2}{ }^{\prime}, e_{3}{ }^{\prime}, e_{4}{ }^{\prime}$ which corresponds to the edges $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}$ of T and each $e_{1}{ }^{\prime}$ is adjacent to b_{i}. Since all edges lies on only one path we join the vertices e_{i} 'to the pathos vertices P_{i}. Clearly its crossing number is at least two, a contradiction.

Case 3: Assume that T be a graph $\sigma=K_{1,3}\left(P_{2}\right)$. By Theorem $15, \mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is nonplanar. The graph σ contains two path of pathos and their corresponding to two pathos vertices p_{1} and $p_{2} \mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$. These two vertices lies in the interior region of $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$. Also they have joined by the edge and gives crossing number at least two, a contradiction.

Conversely, suppose T is $K_{1,3}\left(P_{1}\right)$. By Theorem $15, \mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is planar. $\mathrm{K}_{1,3}\left(\mathrm{P}_{1}\right)$ contains two path of pathos $\mathrm{p}_{1} \& \mathrm{p}_{2}$ such that p_{1} lies in the interior region and p_{2} lies in the exterior region. In $E_{P e}(T)$, two vertices joined by the edges e_{1}, e_{2}, for p_{1} and e_{3}, e_{4} for p_{2}, gives crossing number one. Hence $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ has crossing number one. Also T is P_{4}, then by Theorem $15 \mathrm{E}_{\mathrm{Pe}}\left(\mathrm{P}_{4}\right)$ is nonplanar. In a path P_{4}, there is only one pathosvertex p_{1} which is adjacent to the vertices $e_{1}{ }^{\prime}, e_{2}{ }^{\prime}, e_{3}{ }^{\prime}$ which corresponds to the edges e_{1}, e_{2}, e_{3} of P_{4}. Also $e_{1}, e_{2}, e_{3}, b_{1}, b_{2}, b_{3}$ form $2 C_{4}$ cycles. Since P_{4} contains only one region r_{1} which is adjacent to all $e_{i}{ }^{\prime} \forall i$ and gives crossing number one. Hence $\mathrm{E}_{\mathrm{Pe}}\left(\mathrm{P}_{4}\right)$ has crossing number one.

Theorem 17: For any tree $T, \mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is always noneulerian.
Proof. Let T be a non-trivial tree we consider the following cases.
Case 1: Suppose T be a path P_{n}. If $n=3$, both edges having edge degree odd, by Theorem 11, both vertices have even degreein $E_{P e}(T)$. ut the block vertices b_{i} is adjacent to b_{j}, e_{i} and p_{1} to get odd degree. Hence $E_{P e}\left(P_{3}\right)$ is noneulerian. If n ≥ 3, then the internal edges having edge degree even. By Theorem 11 , the corresponding vertices in $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ have odd degree. Then $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is noneulerian.

Case 2: Suppose T be a star $K_{1, n}$. If n is odd then each edge having edge degree even. In $E_{P e}(T)$, the corresponding vertices having degree odd, which is noneulerian. If n is even then each edge having edge degree odd. In $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ the corresponding vertices $e_{i}{ }^{\prime}$ having even degree. Further each block vertices is adjacent to all the each remaining n-1 block vertices to form complete graph K_{n}. Also each block b_{i} is adjacent to the vertices $e_{i}{ }^{\prime}$ corresponding to $\mathrm{e}_{\mathrm{i}} \in \mathrm{b}_{\mathrm{i}}$ and P_{i} is adjacent to b_{i} gives a vertex b_{i} having odd degree. Hence $E_{P e}(T)$ is non eulerian.

Case 3: Suppose T be any tree. By case $1,2, E_{P e}(T)$ is noneulerian. Hence $E_{P e}(T)$ is always noneulerian.
Theorem 18: For any tree $\mathrm{T}, \mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is always Hamiltonian .
Proof. We consider the following cases.

Case 1: Suppose T is a path with $\left[e_{1}, e_{2} \ldots \ldots . e_{n}\right] \in E(T)$ and $b_{1}=e_{1}, b_{2}=e_{2}, \ldots \ldots . b_{n}=e_{n}$ be the blocks of T. T has exactly one path of pathos and only one region r_{1}. Now the vertex set of $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T}) \mathrm{V}\left[\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})\right]=\left\{e_{1}{ }^{\prime}, e_{2}{ }^{\prime}, \ldots \ldots . e_{n}{ }^{\prime}\right\} \mathrm{U}\left[\mathrm{b}_{1}\right.$, $\left.b_{2}, \ldots \ldots b_{n}\right\} U P_{1} U r_{1}$ then by the definition of $E_{P e}(T)$, the block vertices the region vertices and the pathos vertices are adjacent to all $e_{1}{ }^{\prime}, e_{2}{ }^{\prime}, \ldots \ldots . e_{n}{ }^{\prime}$ as shown in the figure 2.3. Clearly in $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ the Hamiltonian cycle $\mathrm{r}_{1}, \mathrm{e}_{1} \mathrm{~b}_{1} \mathrm{~b}_{2} \ldots \ldots \mathrm{~b}_{\mathrm{n}} \mathrm{e}_{\mathrm{n}}{ }^{\prime} \mathrm{P}_{1}$ $e_{n-1} e_{n-2} \ldots \ldots . e_{2} r_{1}$ exists. Hence $E_{P e}(T)$ is Hamiltonian

Case 2: Suppose T is not a path then T has at least one vertex with degree at least 3. Assume that T has exactly on one vertex V such that degree >2. Now we consider the following subcases of case 2 .

Sub Case 2.1: Assume that $T=K_{1, n}, n>2$ and is odd then the number of paths of pathos are $\frac{n+1}{2}$. Let $V\left[\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})\right]=$ $\left\{e_{1}{ }^{\prime}, e_{2}{ }^{\prime}, \ldots \ldots . e_{n}{ }^{\prime} \mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots . \mathrm{b}_{\mathrm{n}}\right\} \mathrm{U} \mathrm{r}_{1} \mathrm{U}\left\{\mathrm{P}_{1}, \mathrm{P}_{2} P_{\frac{n+1}{2}}\right\}$ then there exist a cycle containing the vertices of $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ as $\mathrm{r}_{1} \mathrm{e}_{1} \mathrm{P}_{1} \mathrm{~b}_{1} \mathrm{~b}_{2} \ldots . \mathrm{b}_{\mathrm{n}} \mathrm{p}_{2} \mathrm{e}_{3} \ldots . P_{\frac{n+1}{2}} \mathrm{e}_{2} \mathrm{r}_{1}$ and is a Hamiltonian cycle. Hence $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is Hamiltonian.

Sub Case 2.2: Assume that $T=K_{1, n} n>2$ and is even then the number of path of pathos are $n / 2$. Let $V\left[\left(E_{P e}(T)\right]=\right.$ $\left\{e_{1}{ }^{I}, e_{2}{ }^{I}, \ldots \ldots . e_{n}{ }^{I} \mathrm{~b}_{1}, \mathrm{~b}_{2}, \ldots \ldots \mathrm{~b}_{\mathrm{n}}\right\} \mathrm{U} \mathrm{r}_{1} \mathrm{U}\left[\mathrm{P}_{1}, \mathrm{P}_{2} \ldots P_{\frac{n}{2}}\right]$. By the definition of $\mathrm{P} \mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$, there exists a cycle containing the vertices of $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ as $\mathrm{r}_{1} \mathrm{e}_{1} \mathrm{p}_{1} \mathrm{~b}_{1} \mathrm{~b}_{2} \ldots \ldots \mathrm{~b}_{\mathrm{n}} \mathrm{P}_{2} \mathrm{e}_{4} \ldots \ldots \mathrm{P}_{\frac{n}{2}} \mathrm{e}_{3} \mathrm{e}_{2} \mathrm{r}_{1}$ and is a Hamiltonian cycle. Hence $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is Hamiltonian.

Case 3: Suppose T is neither a path nor a star then T contains at least two vertices of degree greater than 2. Let V [$\left.E_{P e}(T)\right]=\left\{e_{1} e_{2}{ }_{2} \ldots \ldots e_{n} b_{1} b_{2} \ldots . b_{n}\right\} U\left\{P_{1} P_{2} \ldots . P_{k}\right\} U r_{1}$. By the definition of $E_{P e}(T)$ there exist a cycle C containing all the vertices of $E_{P e}(T)$ as $r_{1}, e_{1}^{\prime}, b_{1}, b_{2}, b_{n}, P_{1}, e_{3}^{\prime} b_{3} b_{4} e_{4}^{\prime} p_{2} \ldots \ldots . e_{n-1}{ }^{\prime} b_{n-1} p_{k} e_{n}^{\prime} r_{1}$. Hence $E_{P e}(T)$ is a Hamiltonian cycle. Clearly $\mathrm{E}_{\mathrm{Pe}}(\mathrm{T})$ is a Hamiltonian graph.

Figure 2.2

CONCLUSIONS

In this paper, we introduced the concept of the entire pathos edge semientire block graph of a tree. We characterized the graphs whose entire pathos edge semientire block graphsare planar, noneulerian, Hamiltonian and crossing number one.

REFERENCES

1. Harary F., Annals of New York, Academy of Sciences, (1977), 175, 198.
2. Harary, F, Graph Theory, Addison- Wesley Reading Mass, (1969). p.72, 107.
3. Jagadeesh N and Venkanagouda. M. Goudar "Pathos edge semientire block graph", Journal of Computer and Mathematical Sciences, Vol.6(7),395-402, July 2015.
4. Kulli. V R., On minimally nonouterplanar graphs, proceedings of the Indian National Science Academy, (1975), 41 A .
5. Kulli. V. R. and Akka. D. G., Journal mathematical Science, Vol. 14, No. 6, (1980), p. 585-588.
6. Sedlacek J., Some properties of interchange graphs. The Graphs and the applications. Academic press, New York (1962).
7. Stanton R G, Cowan D D and James L O, Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computation (1970), 112.
8. Venkanagouda. M. Goudar, "On Pathos vertex semientire graph of a tree", international journal of applied mathematical research (2012),Vol 1 (4),pp. 666-670.
9. Venkanagouda. M. Goudar and Jagadeesh N "Edge semientire block graph", International journal of Computer applications, Vol 89, No.13, pp-42-44,(2014).
10. Y. B. Maralabhavi, Muddebihal and Venkanagouda. M. Goudar, "On Pathos edge semientire graph of a tree", in the Far East Journal of Applied Mathematics, 27 (1) p. 85 - 91, (2007)
